9 research outputs found

    A novel enhanced connection of AC/AC powertrain for HEV - modelling and simulation results

    Get PDF
    The paper deals with a novel enhanced connection of AC/AC powertrain for Hybrid Electric Vehicles (HEV). The substantial contribution of such a connection is the absence of 4QC auxiliary converter needed for autonomous and hybrid operational modes and its compensation by power-lesser 0x5 matrix converter. The main advantages of a simplified connection are, beside smaller auxiliary converter sizing, also possible better efficiency of the HEV powertrain. So, powertrain operation in autonomous traction accu-battery modes uses direct 0x5 configuration of traction 3x5 MxC matrix converter, and in hybrid modes of Internal Combustion Engine (ICE) and accu-battery uses besides traction 3x5 MxC matrix converter the auxiliary 0x5 matrix converter. Modeling and simulation using Matlab-Simulink environment of traction powertrain configuration in autonomous modes are presented in the paper as well as all simulation experiment result

    Design, Modelling and simulation of two-phase twostage electronic system with orthogonal output for supplying of two-phase asm

    Get PDF
    This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources

    Analysis of Four Phase Interleaved Boost Converter

    Get PDF
    This paper deals with analysis of the four phase interleaved DC-DC converter for higher power application. The interleaved topology is widely used due to  its advantage as lower input current ripple which means volume reduction of the input capacitor. The current ripple equation of an input current for the boost operation mode and the ripple current in the individual phase of the interleaved converter using uncoupled inductor are shown. The theoretical equations are supplemented by the simulation results using the Spice simulator and by measurement on the interleaved converter

    Practical Implementation of the Indirect Control to the Direct 3 × 5 Matrix Converter Using DSP and Low-Cost FPGA

    No full text
    The popularity of multiphase drives is increasing due to the growing interest in drives with more than three phases. One promising topology is the multiphase matrix converters, which enable the implementation of a single-stage AC/AC power conversion system with bidirectional power flow capability. In this paper, we present the implementation of indirect control for a practical sample of the direct matrix converter. To reduce the overall cost of the control solution for these types of converters, we utilized low-cost FPGA and DSP. The usage of only DSP itself was not possible due to low number of available PWM output needed for 3 × 5 MxC driving. Another reason is commutation, which must be precise and fast to avoid any hazardous states in the converter. Due to these problems, the authors decided to implement an algorithm of a combination of DSP and FPGA, where FPGA is used for time critical operations. The indirect algorithm treats the converter as two separate parts, the rectifier and the inverter, with the DC-LINK being fictitious. The matrix converter is composed of compact modules, and the entire system is verified. The practical verification demonstrates that matrix converters can produce a wide range of output frequencies and achieve input power factor control. Finally, we compare and review the practical model with the simulation model, examining efficiency and other parameters

    Space vector PWM for two-phase inverter with three legs in Matlab-Simulink

    Get PDF
    This paper deals with design of SVPWM for two-phase inverter in Matlab/Simulink. Nowadays is effort to reduce switching losses and increase efficiency of electrical devices. One of the many possibilities how to deal with this problem is to use inverter control technique called space vector pulse width modulation (SVPWM)

    A New Modified Non-Approximative Method for Dynamic Systems Direct Calculation

    No full text
    This scientific paper presents a novel modified non-approximative method for instantaneously calculating state variables in a compact form. The method provides a direct solution in the discrete time domain, allowing for the specification of state variable values at any discrete time instant without requiring knowledge of previous variable values. This approach is useful for estimating voltage and current stresses of semiconductor elements and circulating energy within power electronic circuits, which is crucial for the correct design and operation of such systems. The paper utilized the z-transform with a long repetitive period to accelerate the calculation time and applies a method to solve the Steinmetz circuit using Matlab. The paper includes detailed simulations and a comparison of time consumption using both Euler implicit and the proposed direct non-approximative methods. Theoretical and simulation results were validated using Matlab/Simulink circuit simulator, demonstrating the effectiveness and efficiency of the proposed method

    A Comprehensive Investigation of the Properties of a Five-Phase Induction Motor Operating in Hazardous States in Various Connections of Stator Windings

    No full text
    This paper examines the properties of a multi-phase drive for EV (electric vehicles) and HEV (hybrid-electric vehicles) using a simulation model in the Matlab/Simulink environment and verifies the findings by experimental measurements on a real motor. The paper studies a five-phase induction motor, a suitable alternative for electric vehicles, due to its better properties such as better torque, smoother ripple, better fault tolerance, and the possibility of connecting stator windings to star, pentagon, and pentagram. The fundamentals of the article are to find out how this engine behaves in fault states, which can be called hazardous states. The paper presents a comprehensive evaluation of the decrease of mechanical power, torque, and power losses during motor operation without failure, in case of failure of one phase, and in case of failure of two adjacent phases and two non-adjacent phases, in different connections. In the simulations, the five-phase drive is powered from an ideal five-phase voltage source to verify the behavior of losses on the motor in fault conditions. Subsequently, the motor model is powered by a five-phase VSI, while the simulated waveforms are confirmed on a real motor, which is also powered by a five-phase VSI. The investigation results are the detection, which of the stator windings has better properties in the fault-free state and the case of fault states in operation. For which stator windings connection, it is most advantageous to design and dimension a five-phase induction motor

    Single-Step Response and Determination of Power Components Mean Values of PES Using <i>p-q</i> Method during Transients

    No full text
    This paper deals with the quasi-instantaneous determination of an apparent-, active-, and reactive (i.e., blind and distortion) power mean values, including total power factor, total harmonic distortion, and phase shift of fundamentals of power electronic system (PES) using the p-q method. The power components’ mean values are investigated both during transients and steady states. Using an integral calculus over one period and the moving average method (or digital filtering), the power components’ mean values can be determined within the next calculation step directly from phase current and voltage quantities. Consequently, with known values of a phase shift of fundamentals (using Fourier analysis), the power factor can be evaluated. The results of this study show how a distortion power component during transients is generated even under harmonic supplying and linear resistive-inductive load. The paper contains a theoretical base, modeling, and simulation for the 5-, 3-, and 2-phases of PES transients. A system compensated by switched capacitors as well as an active power filter shows a possibility to compensate for distortion and reactive power components in the next calculation step. Worked-out results can be used for the right determination and sizing of any PES. The presented approach brings the detailed time-waveform and improved quality of electrical quantities (time-waveforms), and through quasi-instantaneous (single step) response time of compensation, minimizes nascent overvoltage of the system
    corecore